Rings with a setwise polynomial-like condition
نویسندگان
چکیده مقاله:
Let $R$ be an infinite ring. Here we prove that if $0_R$ belongs to ${x_1x_2cdots x_n ;|; x_1,x_2,dots,x_nin X}$ for every infinite subset $X$ of $R$, then $R$ satisfies the polynomial identity $x^n=0$. Also we prove that if $0_R$ belongs to ${x_1x_2cdots x_n-x_{n+1} ;|; x_1,x_2,dots,x_n,x_{n+1}in X}$ for every infinite subset $X$ of $R$, then $x^n=x$ for all $xin R$.
منابع مشابه
rings with a setwise polynomial-like condition
let $r$ be an infinite ring. here we prove that if $0_r$ belongs to ${x_1x_2cdots x_n ;|; x_1,x_2,dots,x_nin x}$ for every infinite subset $x$ of $r$, then $r$ satisfies the polynomial identity $x^n=0$. also we prove that if $0_r$ belongs to ${x_1x_2cdots x_n-x_{n+1} ;|; x_1,x_2,dots,x_n,x_{n+1}in x}$ for every infinite subset $x$ of $r$, then $x^n=x$ for all $xin r$.
متن کاملSemistar dimension of polynomial rings and Prufer-like domains
Let $D$ be an integral domain and $star$ a semistar operation stable and of finite type on it. We define the semistar dimension (inequality) formula and discover their relations with $star$-universally catenarian domains and $star$-stably strong S-domains. As an application, we give new characterizations of $star$-quasi-Pr"{u}fer domains and UM$t$ domains in terms of dimension inequal...
متن کاملsemistar dimension of polynomial rings and prufer-like domains
let $d$ be an integral domain and $star$ a semistar operation stable and of finite type on it. we define the semistar dimension (inequality) formula and discover their relations with $star$-universally catenarian domains and $star$-stably strong s-domains. as an application, we give new characterizations of $star$-quasi-pr"{u}fer domains and um$t$ domains in terms of dimension ine...
متن کاملA COMMUTATIVITY CONDITION FOR RINGS
In this paper, we use the structure theory to prove an analog to a well-known theorem of Herstein as follows: Let R be a ring with center C such that for all x,y ? R either [x,y]= 0 or x-x [x,y]? C for some non negative integer n= n(x,y) dependingon x and y. Then R is commutative.
متن کاملPolynomial Rings with a Pivotal Monomial1
1. Amitsur in his paper on Finite Dimensional Central Division Algebras [l] has proved that in a division ring D with center C, (P: C) 5= ra2 < =o if and only if every primitive homomorphic image of a polynomial ring P[x] is a complete matrix ring Ah, h^n, over a division ring A. Equivalently speaking, a division ring is finite dimensional over its center if and only if the polynomial ring over...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 38 شماره 2
صفحات 305- 311
تاریخ انتشار 2012-07-15
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023